POST
/
v1
/
artifacts
/
ingest
{
  "object": "list",
  "model": "private-gpt",
  "data": [
    {
      "object": "ingest.document",
      "artifact": "quarterly_report",
      "doc_metadata": {
        "file_name": "Q3_Report.pdf",
        "page_number": 1,
        "total_pages": 10
      }
    }
  ]
}

Body

application/json

JSON request body supporting multiple input types

Request body for ingesting content into the system for AI context.

artifact
string
required

Unique identifier for the text being ingested within the collection

Required string length: 1 - 255
Examples:

"user_manual_chapter_1"

"policy_document_2024"

input
object
required

Raw input data to be processed and ingested into the system. Can be a file (base64), URI, or plain text Input for base64 encoded files.

collection
string
default:pgpt_collection

Collection name to group related documents for better organization and filtering

Required string length: 1 - 255
Examples:

"corporate_docs"

"user_manuals"

"financial_reports"

metadata
object | null

Optional metadata dictionary containing additional document information. If provided, must include 'file_name' with a valid file extension

Examples:
{
"author": "John Doe",
"department": "HR",
"file_name": "company_policy.txt"
}
{
"file_name": "manual_section.txt",
"last_updated": "2024-01-15",
"version": "2.1"
}

Response

Content successfully ingested and processed

Response model for successful document ingestion operations.

object
string
required

Response object type, always 'list' for ingestion responses

Allowed value: "list"
model
string
required

Model identifier, always 'private-gpt'

Allowed value: "private-gpt"
data
IngestedDoc · object[]
required

List of ingested documents with their metadata and processing information